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The separating flow induced on a ramp under a supersonic main stream is discussed, 
for high Reynolds numbers, according to the interactive-boundary-layer approach. 
There are two principal motivations for the study, apart from the recent general 
upsurge of interest in compressible boundary-layer separation and stall. The first is 
the need for more progress to be made in the numerical determination of strongly 
reversed flows than has proved possible in computations hitherto. This is tackled by 
means of a new computational scheme based in effect on a global Newton iteration 
procedure but coupled with linearized shooting, second-order accurate windward 
differencing and linear multi-sweeping. The specific case addressed is the triple-deck 
version for steady laminar two-dimensional motion, although the present scheme, 
like the theory described below, also has broader application, for example to 
subsonic, hypersonic and/or unsteady interactive flows. The second motivation is to 
compare closely with the recent theoretical prediction (Smith 1 9 8 8 ~ )  of a local 
breakdown or stall occurring in any interactive boundary-layer solution a t  a finite 
value of the controlling parameter, a say, within the reversed-flow region; the 
breakdown produces a large adverse pressure gradient and minimum negative 
surface shear locally. The first quantitative comparisons are made between the 
theory and computational results, derived in this work at  values of a, here the scaled 
ramp angle, greater than those obtainable before, but with a fixed outer boundary. 
The agreement, while not complete, seems to prove fairly affirmative overall and 
tends to support the suggestion (in Smith 1 9 8 8 ~ )  that, contrary to most earlier 
expectations, in general there is a finite upper limit on the extent to which the 
interacting boundary-layer approach can be taken on its own. A similar conclusion 
holds for unsteady interactive boundary layers concerning a finite-time breakdown 
(Smith 1988b) and boundary-layer transition, and in the present context the local 
nonlinear breakdown provides an explanation for the severe computational 
difficulties encountered previously as well as for a form of airfoil stall. 

1. Introduction 
The build-up from small-scale to large-scale separating flow at high Reynolds 

numbers is of much interest, in aerodynamics, atmospheric dynamics, physiological 
flows and internal machinery dynamics especially, and two of the most intriguing 
issues are those of stall and transition. Viscous-inviscid interaction methods have 
captured many important computational and analytical aspects of such separating 
flow, in boundary layers, ducts, cascades and so on, as reviewed by Stewartson (1974, 
1981), Messiter (1983), Sychev (1987), Smith (1982, 1986b), Davis & Werle (1982), for 
example. The methods and associated composite schemes are most efficient and 
accurate at medium-to-high Reynolds numbers and have been applied in various 
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guises to both two- and three-dimensional motions, mostly in the laminar steady 
regime although there has been some progress also for unsteady flows, concerning 
transition and dynamic stall, and turbulence-modelled flows. In the aerodynamic 
context, viscous-inviscid interaction typically links the pressure on the airfoil 
surface and the boundary-layer displacement, with both being unknown; so in the 
presence of a sufficiently large disturbance, represented by a non-dimensional 
parameter u say, flow separation can be encountered in a regular fashion, followed 
by flow reversal and, depending on the flow configuration, reattachment further 
downstream. Again see the reviews above. 

As a result, there have been many physically interesting and accurate 
computations of steady interactive separating motions presented in the literature. 
These are based on various numerical approaches. Examples are the following: the 
nonlinear shooting techniques of Stewartson & Williams (1969, 1973), Smith & 
Stewartson (1973), Gajjar (1983), Bodonyi & Smith (1986), Elliott & Smith (1986), 
Gittler & Kluwick (1987a, b ) ;  the artificial-time marching of Rizzetta, Burggraf & 
Jenson (1978), Werle et al. (1979), Napolitano, Werle & Davis (1978) ; the inverse and 
semi-inverse schemes of Carter (1972), Veldman (1981), R. T. Davis (1981 private 
communication; see also Davis & Werle 1982), Smith (1977), Bodonyi & Smith 
(1985), Williams (1989) ; the mixed method of Smith & Merkin (1982), Smith (1985, 
1986a) ; the pseudo-spectral approach of Duck & Burggraf (1982), Duck (1985) ; the 
alternating-direction methods of Davis ( 1984) ; the viscous-dominated approach of 
Smith (1987, see also later); and several mixtures of these approaches (see also 
references in the above papers). These include large bodies of work on both the high- 
Reynolds-number limits, such as the triple-deck version, and the finite-Reynolds- 
number interpretations through interacting boundary layers, for subsonic, super- 
sonic and hypersonic-limit boundary layers, liquid-layer flows, channel and pipe 
flows, etc. 

The present study is motivated by interest in compressible boundary-layer 
separation, but also, in particular, by a recent theoretical prediction (Smith 1 9 8 8 ~ )  
which points to a nonlinear breakdown occurring in the steady interactive-flow 
solution at  a finite value of the disturbance parameter u. The proposed breakdown 
singularity arises locally within the revcrsed-flow region and involves a discontinuity 
appearing in the pressure solution and hence in the reversed velocity profiles : see also 
(1.2) below. As Smith ( 1 9 8 8 ~ )  observes, this breakdown theory provides an 
explanation for thc severe numerical difficulties which arise in all separated-flow 
computations (such as those above) once the reversed flow becomes sizeable, as well 
as for two specific local features that are quite commonly encountered, an 
accentuated negative minimum in the surface shear stress and an accentuated 
adverse pressure gradient (see also (1.2)). Comparisons, of a qualitative nature by and 
large, between the theory and previous interactive computations, Navier-Stokes- 
based computations, and experiments, are presented by Smith ( 1 9 8 8 ~ )  and seem 
fairly favourable overall. The theory, moreover, has broad application as i t  applies 
to all the interactive-flow separations known to date, with different interpretations 
for u as described in the above reference. For airfoil flows it has significant 
repercussions on the build-up from small- to large-scale separations associated with 
increasing a, since it represents a stall in the sense of a substantial change being 
induced in the local flow structure. A similar conclusion applies to  the somewhat 
analogous nonlinear break-up at  finite time predicted theoretically in Smith (1988b) 
for any unsteady interactive boundary layer, and compared recently with 
computational studies by J. D. A. Walker & V. Peridier (1989 private communi- 



The interactive breakdown in supersonic ramp $ow 199 

cation; see also Peridier, Walker & Smith 1988, 1990 and Conlisk 1989), the 
break-up being associated with dynamic stall and boundary-layer transition. 

Here a quantitative numerical comparison with the breakdown theory of Smith 
( 1 9 8 8 ~ )  is attempted for a specific case of steady separating motion, the supersonic- 
ramp problem, at increased a values, given the encouraging qualitative comparisons 
a t  relatively low a values discussed in the last reference. It appears to be the first 
such attempt. The current computational work, described below, also seems to 
enable somewhat more progress to be made in the determination of strongly reversed 
flow than appears to have been possible in computations hitherto. This is achieved 
by means of a new computational scheme based in effect on a global Newton iteration 
procedure, coupled with linearized shooting and with second-order-accurate 
windward differencing and linear multi-sweeping to accommodate the reversed-flow 
properties encountered. The new scheme can be applied in principle to other 
interactive flows including the subsonic and hypersonic regimes, with relatively 
minor modifications, although here we concentrate specifically on the supersonic case 
and on the comparison with theory noted above. 

The global Reynolds number Re is based on the airfoil chord, say, and the free- 
stream speed, as are the non-dimensionalized streamwise and normal coordinates x, 
y and velocity components u, w respectively. In  addition, the triple-deck local 
scalings are then applied near the start of the ramp or concave corner a t  x = x,,, so 
that for the steady laminar two-dimensional supersonic flow of concern here 

[x-xo, y , u , v , p - p , ] +  [Re-ab,x,Re-tb,y,Re-Qb,u,Redb,v,He-~b,p] (1.1) 

in the lower deck, and the ramp angle is Re-fb,ol. Here the constants 6 ,  involve 
powers of the order-one skin-friction factor of the oncoming boundary layer ahead 
of the ramp, (ML - l ) ,  where M ,  > 1 is the local frec-stream Mach number, and the 
Chapman constant. These scales and the triple-deck arguments lead to  the governing 
interacting-boundary-layer equations given in $ 2 below ; other examples of 
interacting boundary layers to which the same equations apply with small 
modifications are given in Smith ( 1 9 8 8 ~ ) .  The theory of Smith (1988a) is also 
summarized in $2, its major predictions being that, within the reversed-flow region 
for some finite a = a,, 

with 

max - ++a, min (7,)+-a, (2) 
max(dp/dx) 

[niin(~,)]~ 
+0(1) as a+a;, 

(1.2a, 6 )  

(1.2c) 

where 7, is the scaled skin friction. The computational procedure is described in $3. 
The main results and comparisons are then presented in $4, and again, partly for 
definiteness and partly to compare closely with the theory, the outer boundary in the 
normal direction is kept fixed in most of the computations described, since in 
particular the theory applies for any value of the outer-boundary edge used. The 
comparisons with the predictions in (1.2), while not entirely conclusive, tend to be 
fairly affirmative overall, and hence to confirm the view that contrary to many 
earlier expectations there is a finite upper limit on how far the interacting-boundary- 
layer approach can be taken on its own. Further discussion is also presented in $4. 
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2. The governing equations, and the proposed breakdown structure 
The triple-deck version of the interactive boundary-layer formulation appropriate 

to high Reynolds numbers is tackled here, although other versions including the 
interpretation(s) a t  finite Reynolds numbers are equally susceptible in principle to 
the theoretical breakdown as noted by Smith ( 1 9 8 8 ~ ) .  We decided to concentrate on 
the problem of supersonic flow over a ramp partly for its own practical interest and 
partly because it represents a characteristic viscous-inviscid interactive flow which 
has received considerable attention previously, in particular from Rizzetta et al. 
(1978) and (as kindly pointed out to us by a referee) from Ruban (1978), and which 
can produce separated flow at sufficiently large ramp angles. Thus the governing 
equations in normalized form are the two-dimensional steady boundary-layer 
equations, 

au au a Z u  
u-+w- = -p'(x)+- ax a y  a y 2  1 

(2.la) 

(2.lb) 

holding in the lower deck, subject to the constraints 

u = v = O  at  y = O ,  (2.lc) 

u - y+A(x )+a f (x )  as y+m, (2.ld) 

dA [y,O,O, 01 as x + - m ,  
[ ~ ~ " ' ~ ~ ; i ; ] + { ~ y . o . a ;  -a] as x++co, 

respectively for no slip at the solid surface, matching with the main-deck flow 
solution, merging with the parallel flows far upstream and far downstream, and 
pressure-displacement interaction. This last is Ackeret's result derived from the 
supersonic potential flow properties applying in the upper deck outside the boundary 
layer. A Prandtl shift has been applied above, so that the surface shape is represented 
by af (x)  where, for the ramp case, 

f(x) = 0 (for x < 0 ) ,  f ( x )  = x (for x > 0). (2.lh) 

The parameter a, here taken to be positive, gauges the relative angle of the ramp or 
concave corner. The closed problem (2.la-h) is elliptic because of an eigen or 
branching solution that starts a t  large negative x ,  representing upstream influence. 

Interest centres then on the properties of (2.1) as a increases and in particular the 
advent of separated or reversed flow. Numerous computational treatments of (2.1) 
and related flow problems have been given previously including the approaches 
based on nonlinear shooting, artificial time-marching, inverse and semi-inverse 
schemes, alternating direction-implicit and -explicit, mixed inverse sweeping, 
(pseudo-)spectral, and others, as described for example in 5 1. All the methods so far 
appear to meet with about the same degree of success, namely accurate solutions are 
computed with a limited amount of reversed flow present but numerical accuracy 
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and convergence are lost as the reversed flow strengthens. Further, a pronounced 
negative minimum is observable in the skin friction r, = r(x, 0) (where r = au/ay) 
locally within the reversed-flow zone, in some of the computations, along with a 
significant adverse pressure gradient. 

These two features of the computed results, the numerical difficulties and the 
solution behaviour in reversed flow, led to the recent theoretical suggestion (Smith 
1988 a )  of a singularity or breakdown arising in the interactive-boundary-layer 
solution at a finite value of a. The proposed breakdown, say as a+ag, is a 
predominantly inviscid process taking place within a short streamwise lengthscale 
O ( A )  surrounding the reversed-flow breakdown position x = x,, where u, $, p are 
typically O(1). Thus the controlling equations reduce to the inviscid form 

(2.2a) 

(2.2b) 

from (2.la, b), with x-x, = iX, subject to the displacement condition a t  large y and 
the tangential-flow condition near the surface, 

u-y+po as y m ,  (2.2c) 

$ = O  at  y = O + .  (2.2d) 

Here Po = A(x,)+a,f(x,) is a finite constant, and (2.24 is consistent with the 
existence of a viscous sublayer of thickness O(A3) adjoining the surface and 
containing reversed motion. The reversed velocity profiles a t  the streamwise ends of 
this thin breakdown region are different, 

u+ul (y)  upstream, u+u2(y) downstream, with u1 + u2, (2.2e) 

and cause an overall pressure rise, so that 

p(xg) < p(xi) a t  a = a,. (2.3) 

Again, it follows that the maximum pressure gradient induced is large, O ( k l ) ,  and 
positive, and the minimum in the skin friction is large, O(A-;),  but negative: 

2-t, (2.4a, b)  

with j+ 0 + as 01 + a;. The proposed relation between d and (as - a) stems from the 
relative effects of the viscous sublayer thickness and the displacement ( - A )  
variation induced by the Ackeret law (2.lg), in this case, suggesting the scale 

A 

A = ( U , - - C L ) ~ .  ( 2 . 4 ~ )  

Virtually thc same reasoning behind(2.2)-(2.4b) applies to  all the viscous-inviscid 
interactive flows known to date (with only ( 2 . 4 ~ )  being altered) : see Smith (1988a), 
which also proposes other forms of finite-a breakdown, although the above is the 
main form. Further, a not dissimilar breakdown phenomenon is described by Smith 
(1988 b )  for unsteady interactive boundary layers, the singularity in that context 
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arising at a finite time. Here we concentrate on the steady supersonic-ramp problem 
(2.1) and describe a computational approach designed to go further into the 
separated-flow regime at highera values than has proved possible before, in order to 
extend the capability of reversed-flow computations as well as to compare more 
closely with the theoretical predictions in (2.2)-(2.4) of a finite-or breakdown. 

3. The numerical approach 
The scheme developed is basically a global Newton procedure but coupled with 

linearized marching and a second-order-accurate treatment of any reversed flow 
encountered. The classical Newton approach of assuming 

[$, u, r , p , A ]  = [$,a, 7,9,JI + [+, .ii, T,r?;, 21 (3 .1)  

is taken, in an $+-T formulation, with the differences (tilde variables) between the 
unknown solution on the left and the given guess (overbar variables) being supposed 
to be small. Hence (3, d, i ) (x ,  y),  @(x), x ( x )  are governed by the linearized system 

( 3 . 2 ~ )  

subject to the boundary conditions. 

from ( 2 . 1 ~ 3 ) .  The broad object then is to reduce all the right-hand sides in ( 3 . 2 ~ 3 )  
as closely to zero as possible, by repeatedly solving for the tilde variables and adding 
them to the overbarred variables to obtain new global guesses as implied in (3 .1) .  

The method used is as follows ; see also figure 1. Finite differencing of second-order 
accuracy is applied to (3 .2) ,  with step sizes Ax,  by in x, y, to yield the discretized 
system 

&(sij+l+ ~ i j )  - ( f i i j+1-  + t j ) / A ~  = ($ij+l- $tj)/AY- B(aij+l+ atj) > ( 3 . 3 ~ )  

Wi,+l+%j)- Wij+l-%,)/AY = ( % t ~ + l - a t j ) / A Y - ~ ( i t , + ~ + ~ t , ) ,  (3.3b) 

[E(Gij+l + 6,  - C+lj+l - Ci-1j ) /2A~ + a(4ij+1 + 4, + i i - l j+l  + iL?.i-lj) G’ 

(3.3c) 
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1 
XI ”” 

New 
PI 

(g) Correct 
P I  

(h)  Newton global update 

FIGURE 1.  Diagram indicating the global iteration scheme based on linearized shooting: (a) guess 
9,; ( b )  march forward; (c) sweep back and forth; ( d )  march forward to downstream end; ( e )  store 
p , ;  (f) reguess@, and repeat (b ) - ( e )  ; (9)  interpolate to obtain correct end condition on 9,; (h) update 
global solution, and restart at (a). 

(3.3d) 

(3.3e) 

the analogue of (3.2e, f ) ,  including j5, = a-p,, (3 .3 f )  

Here the streamwise spacing has x = xl+  (i-1)Ax with i running from 1 (at the 
upstream end 5 = xl) to I (at the downstream extreme x = x2 = x1 + ( I -  1)  Ax) ; the 
normal spacing is y = (j- 1)  Ay = yj for j = 1 to J ;  and the subscripts i , j  refer to 
evaluation a t  the i , j  grid point as usual. The condition (3 .3f)  is described more 
precisely below, and the ends x = xl, x2, y = yJ are intended to represent the 
asymptotic extremes shown in (3.2d-f). The overbarred and double-overbarred 
quantities are prescribed for each sweep of the flow field, 1 < i < I ,  1 <j < J .  The 
linear boundary-value problem in terms of x is then treated in the following way, if 
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the flow is totally forward : see the case of reversed flow later. A guess is made for 9,. 
the small pressure kick a t  the starting station x = xl. The system (3.3a-e, g) is then 
marched forward in x from i = 2 to the end station i = I where x = x2 to give an end 
pressure valuc @ = F I .  A second guess for PI, followed by a forward march, yields a 
second value for F r .  Since we require F I  to satisfy the condition (3.3f), linear 
interpolation of the two 11, guesses can be used in principle to obtain the correct value 
of Pl to achieve this condition. This particular aspect relies of cwurse on the linearity 
of the system (3.3) being addressed here, yielding an explicit global update solution 
in effect, as opposed to nonlinear shooting of (2.1) which is implicit and can even 
encounter nonlinear singularities corresponding to enhanced separation or attached 
flow during each sweep of the flow field. I n  the current method, with the correct 
value found, the solution (&, d,  a, @, a) is known therefore throughout the flow 
domain and is added to ($, ti, 7, p. A) to provide an updatcd global guess. The 
procedure, of solving (3.3) by shooting and then updating via (3.1), is continued until 
a suitable convergence criterion is met. 

In more detail, a t  each i-station (3.3a-e, g) can be solved explicitly by matrix 
inversion, given all the overbarred quantitics and the values a t  the i- 1 station. At 
the starting station i = 1 we set 9, as described above along with a, = 0 and & = 
6 = ? = 0 at each j-point, and likewise at  the end station i = I .  We ensured that the 
overbarred variables satisfied all the boundary conditions a t  the outset, to help 
matters. Also, a smoothing factor (q )  was used for the ramp shape as described later. 
Again, a relaxation factor o was added to the updating step corresponding to (3.1), 
at  the higher values of a. Finally here, the downstream growth of the shooting 
solutions triggered by the guesses for @1 is sufficiently strong that in practice, i.e. on 
the computers used here, lincar interpolation alone is inadequate to achieve the 
downstream constraint accurately, especially a t  the higher values of a, during the 
early sweeps of the flow domain. This growth of linear disturbances is equivalent to 
the Lighthill (1953) exponential branching behaviour 

p a cxp (KX) (K = 0.8272 ...) (3.4) 

persisting as x 4 + 00 rather than being confined to its proper role as an upstream- 
influence factor for x+- 00 as mentioned in 92. To counteract this, the linear 
shooting procedure is continued to a maximum of M shoots, with each newly 
interpolated @, value serving as a new first guess for the correct pressurc kick. The 
counter-action is however switched off well before halfway through thc com- 
putations, for a given a, as the direct interpolation proves adequate after that stage. 

If reversed flow is present, the above scheme is modified for each linear shoot (see 
figure 1). Given the guessed value of F1, the forward march is taken up to the 
separation station x = xSep beyond which some velocity profiles with negative aexist. 
The schemc is then swcpt repeatedly back (decreasing i) and forth (increasing i) 
through the reversed-flow region between the separation and the reattachment point 
x = x, until the reversed-flow solution is sufficiently converged, say after N sweeps. 
In this region windward differencing is applied, to stabilizc the back and forward 
marching, in the form 

(3.5) 
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- 
@ = @iji;, 3 = ( -3~i~~:+4@iiljtt-@it2j+f)/2A~, 

- 3’ = (3$iji; - 4$i-1j+; + $i-2j+;)/2A~, T = Fiji$, 

j? = (3r5,-4Ff-, +p+2)/2A~, 3’’ = (= ‘ij+l -- ‘ij)/ A Y y  
and the subscript j + 8 stands for the average of j and j + 1 values. Here, for a forward 
or a back sweep, (3.5) replaces ( 3 . 3 ~ )  at grid points i , j  where there is reversed flow, 
defined by negative, the centring here being at  i ,j+g rather than at i-+,j++ as 
before and allowing direct upstream propagation of information via the extended 
streamwise differencing as in E’ above. The form (3.5) for reversed flow preserves the 
nominal second-order accuracy of the whole approach, and it proved stable. First- 
order-accurate forms were also tested and these gave, upon grid extrapolation from 
several runs, results that virtually coincided with those from the above form. 
(Another stabilizing feature of the linearized method here is that the background 
field a , ~ ,  which provides the latest estimates of xsep,xr among other things, is 
‘frozen ’, and so tends to suppress the growing oscillatory behaviour that often ruins 
nonlinear iterative computations of separating flows as the reversed motion 
strengthens.) Once the solution in the reversed-flow domain is settled as above, the 
remaining interval between x, and the end station x2 can be covered by marching 
forward, thus yielding fil, and then the next linear shoot, with another fil value, is 
performed in the same manner, in readiness for the linear-interpolation procedure 
described in the previous paragraph. 

The typical grids used in the computations had the parameters ( I ,  Ax, J ,  Ay, xl, 
x 2 )  equal to (101-201, 0.4-0.2, 41, 0.25, -12, 18) and tests on their effects are 
illustrated in the figures below. Again, we usually took (p, w ,  M ,  N )  equal to (20, 0.1, 
15, 20-24) but also tested their influences on the solution and on the speed of 
convergence. The convergence criterion was set as a difference of lo-* or less between 
the successive overbarred values of the skin friction and pressure, and this required 
up to 140 overall flow-field sweeps, i.e. applications of the update corresponding to 
(3.1), at the higher values of a a tackled and for a typical grid. Computed solutions 
at such a values were derived by gradual increases from converged results at lower a 
values. The solutions from the present method also agree closely with those obtained 
from an alternative linearization method described by Smith (1987) (see also Bowles 
1990) in which, in essence, the nonlinear terms on the left-hand side in (2.lb) are 
assumed known, the resultant linearized system (2.1~-h) is solved in an elliptic 
manner for u, v, p, A everywhere, the nonlinear terms are then updated, with much 
under-relaxation, and the iteration process then continues. This latter method 
likewise produced accurate solutions up to a values greater than those obtained in 
previous studies but significantly less than in the current method described in 
(3.1)-(3.5). The results from the current approach, especially for the much higher a 
values that proved attainable with apparent accuracy, are presented in the next 
section. 

4. Results, comparisons and discussion 
Sample computational results obtained for the skin friction T, and the pressure p ,  

versus x, are plotted in figures 2 and 3 for various values of a. See also subsequent 
figures. Grid-size effects and the pressure-gradient maxima are also indicated here 
and below. Regular separation, flow reversal and reattachment are present for a 
greater than a value aSep w 1.57. Beyond that value the current solutions are in quite 
close agreement with Rizzetta et aZ.’s (1978) up to a values of about 3 but differ 
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FIGURE 3(a-c). For caption see facing page 
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7 I 
209 

Y 

FIGURE 3. Results for the pressure p versus 2; same notation as in figure 2. The solid dots denote 
the values, and locations, of max(dp/ds). 

noticeably a t  the largest value (a = 3.5) for which they showed results: Professor 
0. R. Burggraf (private communication 1988), we note, agrees with the trends of the 
new results there. Typical velocity profiles are shown in figure 4. The most striking 
features of the computed solutions a t  the higher values of a in all the figures 2 4  are : 
first, the local drop in pressure associated with secondary separation near the corner; 
second, the halting of the trend towards an increasingly large separation eddy 
encountered at lower a values (see also below however) ; and third, the increasingly 
rapid streamwise variations locally in the reversed-flow domain, with pronounced 
ncgativc dips being encountered in the skin-friction curvcs and sharp rises in the 
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I I I 
- 5  0 5 

U 

FIGURE 4. Computed velocity profiles for a = 6.2, from grid [ - 16, 24, 0.2, 10, 4, 201, at various 
x-stations. 

pressure curves, prior to reattachment. It seems fairly clear that  these last features 
are qualitatively in keeping (or not out of keeping) with the theory of Smith (1988a) 
described earlier, as is the character of the velocity profiles. 

To make comparisons in quantitative terms, then, at such higher a values, we first 
present the overall extrema of the computed r,, dpldx solutions within the reversed- 
flow region, versus a, in figures 5 and 6. These lead on to the plots in figure 7 of the 
quantities - l/min (7,) and [l/max(dp/dx)]; versus a, to compare with the particular 
theoretical predictions in (2.4). The computational results appear to be in reasonably 
close agreement with the theoretical trend for a relatively wide range of the higher 
a values. They indicate a critical value as somewhat below 9 in this case, subject to 
the comments below. 

Grid-size effects shown in the figures above include results from both the first- and 
the second-order-accurate windward differencing procedures described in $ 3, from 
varying grid spacing in both directions and the outer boundaries, and from altering 
the ramp shape very close to the corner a t  x = 0. Here the ramp shape (see (2.1 h ) )  was 
replaced byf(x) = x/{l +exp (-qx)} with q being a relatively large positive constant. 
Computed solutions were obtained for various values of the smoothing factor q and 
these appeared to confirm the occurrence of secondary separation near the start of 
the ramp, as shown in figure 2, as well as indicating no significant effects on the 
results elsewhere in the flow field. Comparisons are also given with numerical 
solutions from the alternative linearization approach outlined near the end of $3, the 
agreement being good. The main effect of the grid distribution is that due to the 
outer-y boundary throughout, which influences the separation length mentioned 
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FIGURE 5. Variation of min (7,) with a. Results (i) (ii),  ( i i i )  correspond to the first three grids listed 
in the caption for figure 2, in turn, and (iv) is from extrapolation of ( i ) ,  (ii).  Also presented are the 
results from altering p to 10 (m), yJ to 15 (A and A) in case (ii), and from the alternative 
linearization method outlined at the end of $3  (shown *, with r = 240 x 0.5). 

earlier for instance, but we decided mainly to focus specifically on the results with the 
outer-y boundary a t  10, for the reasons given in $1,  especially considering that the 
theory above, with which comparisons are made, applies also to finite outer 
boundaries. (In passing, and in reply to a referee, we note that the decay far 
downstream is of exponential form for a fixed outer boundary, rather than the 
algebraic form (e.g. Gittler & Kluwick 1989) holding for infinite outer boundaries.) 
The computations clearly become considerably more sensitive as regards accuracy as 
a is increased, even though it proved possible (as indicated partially in the figures) to  
extend the results to  larger a values with a given coarser grid or with only first-order 
windward differencing. The accuracy limitations along with the corresponding 
reductions in the overall convergence rates rendered the method increasingly time- 
consuming at  the increased a values covered in this work, but it is felt that  the 
combination of the required links and comparisons with the theory above and the 
significantly higher a-range accommodated tended to  justify the computer time and 
effort involved. 

Both the comparisons with the theory and the extension to  more strongly 
separated flow associated with higher values of a wquld seem to be fairly encouraging 
aspects overall. Such comparisons between computations and theory can never be 
utterly convincing of course. We note among other things that the values shown as 
extrema in figures 5-7 are the minima or maxima of the values actually obtained at 
grid points, without interpolation, and so these tend to  underestimate the true 
extrema ; similar underestimation of the extrema, and hence overestimation of the 
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FIQURE 6. Variation of max (dpldr) with a, from the third grid listed in the caption for figure 2. 
Also shown (*) is the result from the alternative method, as in figure 5. 

critical value as, is evident in all the grid refinement procedures and extrapolation. 
Again, the quantities involved, the surface shear and the pressure gradient, are 
always among the most sensitive quantities to determine numerically. Indeed it 
could still be the case that, especially for infinite outer boundaries, the interactive- 
boundary-layer solution may continue to infinitely large a (Smith 1988a), given also 
the possibility of non-uniqueness among other things. Discontinuities or similar 
phenomena, however, would then seem necessary to overcome the theoretical 
difficulties described in previous theoretical attempts a t  providing a large-a solution 
of the nonlinear system. As far as the numerical study here is concerned, the new 
method developed appears to have worked fairly well, a t  least in this context, and 
to have gone further into the reversed-flow regime than all previous ones, a t  least as 
far as we are aware. Other numerical attempts would be very welcome, needless to 
say, on this and other strongly separated interactive motions, in view of the 
sensitivity of the computations and the non-uniqueness question for instance. 

The theoretical breakdown in Smith (1988a) which partly motivated the present 
investigations is predominantly an inviscid phenomenon (see also $2)  and so i t  leads 
to an Euler stage next, locally around the breakdown position. This stage, i.e. where 
the two-dimensional nonlinear Euler equations apply, bringing in non-zero normal 
pressure gradients as the major extra feature, requires new numerical studies to sort 
out its impact on the overall motion for example. Work along those lines is being 
started by one of us (F.T.S.). Physically, the breakdown, which can occur in any 
interacting boundary layer, is believed to represent the onset of stall in the 
separating motion corresponding to significant alteration in the flow structure 
locally. I n  principle this breakdown can arise in any large-scale breakaway separation 
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FIGURE 7. Results for (a) [--in (TW)]-' and (b) [max (dp/dz)]-i, versus a. In  (a), curves (i), (ii), (iii) 
are from the first-order-accurate scheme described towards the end of §3, with Ax = 0.8,0.4,0.2 in 
turn; (iv) is extrapolated from (ii), (iii); curves (v), (vi), (vii) are from the first three successive grids 
listed in the caption for figure 2 (results (vi), (vii) are graphically identical); curve (viii) is 
extrapolated from (v), (vi). The same notation applies for (b). Also shown is the effect of setting the 
y-distribution as y = 50 x 0.2 ( d )  for case (iii), and y = 40 x 0.375 (0) for case (ii). Curves (ix), in 
(a), (b), are straight lines predicted from the theory in (2.4) (Smith 1988a), for comparison. 
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as well as in thc more confined regimes such as the supcrsonic-ramp separation 
considered here. The occurrence and prediction of stall are of much importance in 
practical applications, cqccially for aerodynamics, and the theoretical breakdown 
form above suggests criteria for the occurrence in steady separating flow : see integral 
properties of the local velocity profiles in the reference above. Unsteady stall and the 
allied phenomenon of transition are also of great practical interest and these are 
addresscd in related theorctiral work (Smith 19886), yielding a broadly similar local 
breakdown a t  finite time. Computational comparisons in the unsteady case, and 
subsequent theory on the removal of the finite-time-breakdown, are in Peridier, 
Walker & Smith (1990; see also Peridicr 1989), and Hoylc, Smith & Walker (1990; 
see also Hoyle 1991) respectively. Also, certain unsteady-flow interactions arc being 
tackled with the present computational method (fj3), which can also be modified to 
the subsonic range for instance and has been applied to the interactive hypersonic 
range by Khorrarni & Smith (paper in preparation; sce also Brown et al. 1991; 
Khorrami 1991), for steady flows past flat plates and thin airfoils. 

Thanks are due to  the referees, for helpful comments, to SERC and MOD for joint 
support of A.F.K., to AFOSR for support for F.T.S.,  and to  SERC and ULCC for 
Cray computer facilitics. 
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